CHES 2006 - Yokohama

Three-Phase Dual-Rail Pre-Charge Logic

M. Bucci, L. Giancane, R. Luzzi, A. Trifiletti

{marco.bucci, raimondo.luzzi}@infineon.com {giancane, trifiletti}@die.mail.uniroma1.it

Never stop thinking.

Summary

- Advantages of pre-charged dual-rail logics
- Some implementation issues
- Impact of unbalanced loads and circuit asymmetries on the actual robustness against DPA
- The proposed logic style (TDPL) vs a reference dual-rail logic style (SABL)
- Simulation testbench and results on basic gates
 - Case study: FULLADDER

Application scenario: masking a state machine

Busses and registers can be "easily" XOR-masked. Unfortunately, this does not hold for combinatorial functions that, in general, are not linear with the XOR operator.

Dual-Rail pre-charged logic is a countermeasure suitable to be "transparently" applied to combinatorial functions.

It has also the advantage to be "glitch-free".

Just two gates are needed for the implementation of a complete dual-rail family

M. Bucci, IFDA DCGR CC Page 4

Load capacitances in a dual-rail gate

The actual robustness of a dual-rail device depends on the actual balancing of its implementation.

Load capacitance are the main issue, but also internal nodes are relevant.

In facts, an accurate load balancing requires a full custom design flow (i.e. manual or semi-manual routing and a large amount of post-layout simulations).

Effect of unbalancing of complementary wires

A DPA peak appears when a set X of traces is partitioned on two sets X_0 and X_1 in such a way their averages can be "distinguished".

M. Bucci, IFDA DCGR CC Page 6

Effect of unbalancing of complementary wires (cont.)

 $\sigma_d^2 = \sigma_{\overline{X}_0}^2 + \sigma_{\overline{X}_1}^2$

is, in facts, the "signal/noise" ratio of a DPA peak

and

where

 σ_d

What does it mean?

As an example: a 5% unbalanced dual-rail will feature only a 1/20 attenuation and could be attacked, using 400*N traces, the same as a single rail using N traces.

...and 5% is a quite optimistic unbalancing estimation.

How can we make the energy consumption of the circuit "balanced"?

Normally, both rails are pre-charged, but only one is discharged during the evaluation phase.

The problem comes from the fact that the energy consumption depends on **which** wire (or internal node) switches.

Three-phase dual-rail

In order to balance energy consumption we can simply make both the wires switch by adding a discharge phase.

As a matter of fact, we can notice that now the information is not anymore on **which** wire switches, but on **when** wire switches (i.e. we use a sort of phaseencoding).

M. Bucci, IFDA DCGR CC Page 9

The proposed logic style (inverter)

- **charge**: outputs are pre-charged to VDD via P_1 , P_2 , P_5 ;
- **2.** evaluation: N_7 is closed thus discharging one of the outputs via the pull down circuit (N_5 , N_6) according on the input lines;
- **3. discharge**: the additional pull down N₁, N₃, discharges the output line that was not discharged during the evaluation phase.

M. Bucci, IFDA DCGR CC Page 10 1.

SABL vs TDPL

TDPL inverter

In TDPL, two additional pull-downs NMOS (N_1 , N_4) and a PMOS switch (P_1) are added in order to implement the discharge phase.

Other gates in TDPL

As in SABL, gates differ only in the pull-down circuit.

Notice that, being a dual-rail logic, the AND gate is actually a "universal gate" (AND, NAND, OR, NOR).

Simulation testbench (TDPL vs SABL)

- Process: Infineon 0.12µm, 1.5V supply voltage;
- Transistor sizes: $W = 0.68 \mu m$; $L = 0.12 \mu m$;
- Simulation: Spectre/BSIM3v3.

Since power consumption mainly depends on transitions, all possible input transitions have been simulated.

NAND current traces for all input transitions: SABL vs TDPL

M. Bucci, IFDA DCGR CC Page 14

Simulation results for the three basic gates

	INV		NAND/AND		XOR/NXOR	
	SABL	This work	SABL	This work	SABL	This work
max(E)	52.3	65.6	56.3	68.3	58.4	69.5
min(E)	31.1	65.3	35.2	66.4	39.4	68.0
NED	40.4%	0.4%	37.5%	2.7%	32.6%	2.1%
E	41.7	65.5	50.5	67.3	48.9	68.7
σ	10.9	0.1	8.0	0.6	8.5	0.4
NSD	26.1%	0.2%	15.9%	0.9%	17.4%	0.6%

 $\max(E) - \min(E)$ NED $\max(E)$

 $NSD = \frac{\sigma_E}{\overline{E}}$

Case study: TDPL vs SABL Full Adder

Dual-rail FULLADDER based on XOR and NAND gates cascaded using a Domino logic (static inverters).

Notice that, in TDPL, static inverters do not cause unbalanced energy consumption since, as the connection wires, each inverter switches the same number of times.

FULLADDER current traces: SABL vs TDPL

M. Bucci, IFDA DCGR CC Page 17

Simulation results for the FULLADDER

- (8x8) traces related to all possible input transitions
- each gate is unbalanced as shown in the previous testbench

	FULLADDER			
	SABL	This work		
max(E) [pJ]	447.0	609.6		
$\min(E)$ [pJ]	360.1	604.1		
NED	19.4%	0.9%		
E [pJ]	405.6	606.8		
$\sigma_{\rm E}$ [pJ]	22.1	1.3		
NSD	5.4%	0.2%		

- NSD improvement over 25 times
- power consumption increasing about 50%

Balanced vs unbalanced TDPL

Balanced and unbalanced TDPL behave almost the same: i.e. the goal to avoid full-custom layout seems to be achieved!

	C UNBALANCED			
C BALANCED	10%			
[pQ]	[pQ]			
0,1761	0,1836		C BALANCED	C LINBALANCED
0,1761	0,1836		O BALANOLD	OUNDALANOLD
0,1764	0,1839			10%
0,1764	0,1839	MAX	0 1764	0 1839
0,1761	0,1836		0,1701	0,1000
0,1761	0,1836	MIN	0,1761	0,1836
0,1764	0,1839	AED	0.0003	0,0003
0,1764	0,1839	NED	0.002	0.002
0,1764	0,1839	NED	0,002	0,002
0,1764	0,1839	SD	0,000	0,000
0,1761	0,1836	NSD	0.001	0 001
0,1761	0,1836	NOD	0,001	0,001
0,1764	0,1839			
0,1764	0,1839			
0,1761	0,1836			
0,1761	0,1836			

The residual leakage seems to depend on second order effects such as:

- parasitics which depend on the state of adiacent nodes;
- power transfer through inputs;

Conclusions

- DPA-resistant dual-rail logic family suitable for a semicustom design flow
- almost constant energy consumption even in presence of heavily asymmetric interconnections and pull-downs:
 - about 25 times more balanced than SABL in case of a FULLADDER;
 - in facts, the same robustness as a full-custom dual-rail logic
 - power consumption and area penalties smaller than MDPL

